Decomposition of Algebras with Involution in Characteristic 2

نویسنده

  • ANDREW DOLPHIN
چکیده

In this paper we present a decomposition theorem for hermitian forms over fields of characteristic 2 refining the usual Witt decomposition in this case. We apply this decomposition to algebras with involution over fields of characteristic 2 to give a complete description of the effect of passing to a generic splitting field of the algebra on the isotropy of the involution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra and Involution Ideals in $BCK$-algebras

In this paper, we define the notions of ultra and involution ideals in $BCK$-algebras. Then we get the relation among them and other ideals as (positive) implicative, associative, commutative and prime ideals. Specially, we show that in a bounded implicative $BCK$-algebra, any involution ideal is a positive implicative ideal and in a bounded positive implicative lower $BCK$-semilattice, the not...

متن کامل

On p-semilinear transformations

In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...

متن کامل

Polar and Ol'shanski Decompositions 1. Symmetric Lie Algebras

The Cartan decomposition in a semisimple Lie group is a generalization of the polar decomposition of matrices. In this paper we consider an even more general setting in which one obtains an analogous decomposition. In the semisimple case, this decomposition was worked out in a seminal paper of G. I. Ol'shanski 13]. In this paper we give general necessary and suucient conditions for this decompo...

متن کامل

Orthogonal Pfister Involutions in Characteristic Two

We show that over a field of characteristic 2 a central simple algebra with orthogonal involution that decomposes into a product of quaternion algebras with involution is either anisotropic or metabolic. We use this to define an invariant of such orthogonal involutions in characteristic 2 that completely determines the isotropy behaviour of the involution. We also give an example of a non-total...

متن کامل

On Totally Decomposable Algebras with Involution in Characteristic Two

A necessary and sufficient condition for a central simple algebra with involution over a field of characteristic two to be decomposable as a tensor product of quaternion algebras with involution, in terms of its Frobenius subalgebras, is given. It is also proved that a bilinear Pfister form, recently introduced by A. Dolphin, can classify totally decomposable central simple algebras of orthogon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011